Title: | Dimension Reduction Methods for Multivariate Time Series |
---|---|
Description: | Estimates VAR and VARX models with Structured Penalties. |
Authors: | Will Nicholson [cre, aut], David Matteson [aut], Jacob Bien [aut] |
Maintainer: | Will Nicholson <[email protected]> |
License: | GPL (>=2) |
Version: | 1.1.1 |
Built: | 2024-11-22 05:39:39 UTC |
Source: | https://github.com/wbnicholson/bigvar |
Coefficient matrix for a stationary simulated multivariate time series
Example generator matrix adapted from Table 3.2 of Gredenhoff and Karlsson (1997)
Will Nicholson
Gredenhoff, Mikael, and Sune Karlsson. "Lag-length selection in VAR-models using equal and unequal lag-length procedures." Computational Statistics 14.2 (1999): 171-187.
BigVAR implements the HLAG and VARX-L frameworks which allow for the estimation of vector autoregressions and vector autoregressions with exogenous variables using structured convex penalties. This package originated as a 2014 Google "Summer of Code" Project. The development version of this package is hosted on github: https://github.com/wbnicholson/BigVAR.
To use the facilities of this package, starting with an multivariate time series (in which T denotes the length of the series, k the number of endogenous or "model") and run
constructModel
to create an object of class BigVAR
. cv.BigVAR
creates an object of class BigVAR.results
, which chooses an optimal penalty parameter based on minimizing h-step ahead forecasts on a specified cross-validation period over a grid of values as well as comparisons against AIC, BIC, unconditional mean, and a random walk. There are plot functions for both BigVAR (plot.BigVAR
) and BigVAR.results (plot
) as well as a predict function for BigVAR.results (predict
).
Will Nicholson [email protected],
Lutkepohl "New Introduction to Multivariate Time Series", Banbura, Marta, Domenico Giannone, and Lucrezia Reichlin. 'Large Bayesian vector auto regressions.' Journal of Applied Econometrics 25.1 (2010): 71-92. Breheny P, Huang J (2011). “Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection.” Annals of Applied Statistics, 5(1), 232–253. Nicholson, William, I. Wilms, J. Bien, and D. S. Matteson. High dimensional forecasting via interpretable vector autoregression. Journal of Machine Learning Research, 21(166):1–52, 2020. William B. Nicholson, David S. Matteson, Jacob Bien,VARX-L: Structured regularization for large vector autoregressions with exogenous variables, International Journal of Forecasting, Volume 33, Issue 3, 2017, Pages 627-651, William B Nicholson, David S. Matteson, and Jacob Bien (2016), 'BigVAR: Tools for Modeling Sparse High-Dimensional Multivariate Time Series' arxiv:1702.07094
constructModel
, cv.BigVAR
, BigVAR.results
, plot
, predict
# Fit a Basic VAR-L(3,4) on simulated data data(Y) T1=floor(nrow(Y)/3) T2=floor(2*nrow(Y)/3) m1=constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE,T1=T1,T2=T2,IC=FALSE) plot(m1) results=cv.BigVAR(m1) plot(results) predict(results,n.ahead=1)
# Fit a Basic VAR-L(3,4) on simulated data data(Y) T1=floor(nrow(Y)/3) T2=floor(2*nrow(Y)/3) m1=constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE,T1=T1,T2=T2,IC=FALSE) plot(m1) results=cv.BigVAR(m1) plot(results) predict(results,n.ahead=1)
An object class to be used with cv.BigVAR
To construct an object of class BigVAR, use the function constructModel
Data
a multivariate time series
model_data
processed time series and lag matrix
lagmax
Maximal lag order for modeled series
intercept
Indicator as to whether an intercept should be included
Structure
Penalty Structure
Relaxed
Indicator for relaxed VAR
Granularity
Granularity of penalty grid
horizon
Desired Forecast Horizon
crossval
Cross-Validation Procedure
Minnesota
Minnesota Prior Indicator
verbose
Indicator for Verbose output
dates
dates extracted from an xts object
ic
Indicator for including AIC and BIC benchmarks
VARX
VARX Model Specifications
VARXI
VARX Indicator
T1
Index of time series in which to start cross validation
T2
Index of times series in which to start forecast evaluation
ONESE
Indicator for 'One Standard Error Heuristic'
ownlambdas
Indicator for user-supplied lambdas
tf
Indicator for transfer function
alpha
Grid of candidate alpha values (applies only to Sparse VARX-L and Elastic Net models)
recursive
Indicator as to whether recursive multi-step forecasts are used (applies only to multiple horizon VAR models)
constvec
vector indicating variables to shrink toward a random walk instead of toward zero (valid only if Minnesota is TRUE
)
tol
optimization tolerance
window.size
size of rolling window. If set to NULL an expanding window will be used.
separate_lambdas
indicator to use separate penalty parameter for each time series (default FALSE
)
loss
Loss function to select penalty parameter (one of 'L1','L2','Huber').
delta
delta parameter for Huber loss (default 2.5)
gamma
gamma parameter for SCAD or MCP penalty (default 3)
rolling_oos
True or False: indicator to update the penalty parameter over the evaluation period (default False
)
linear
indicator for linearly decrementing penalty grid (FALSE is log-linear).
refit_fraction
fraction of least squares refit to incorporate (default is 1).
Fit a BigVAR object with a structured penalty (VARX-L or HLAG).
BigVAR.est(object)
BigVAR.est(object)
object |
BigVAR object created from |
Fits HLAG or VARX-L model on a BigVAR object. Does not perform cross-validation. This method allows the user to construct their own penalty parameter selection procedure.
An array of or
coefficient matrices; one for each of the n values of lambda.
constructModel
, BigVAR.results
,cv.BigVAR
data(Y) Y=Y[1:100,] #construct a Basic VAR-L Model1=constructModel(Y,p=4,struct='Basic',gran=c(50,10)) BigVAR.est(Model1)
data(Y) Y=Y[1:100,] #construct a Basic VAR-L Model1=constructModel(Y,p=4,struct='Basic',gran=c(50,10)) BigVAR.est(Model1)
It inherits the class BigVAR, but contains substantially more information.
InSampMSFE
In-sample MSFE from optimal value of lambda
LambdaGrid
Grid of candidate lambda values
index
Rank of optimal lambda value
OptimalLambda
Value of lambda that minimizes MSFE
OOSMSFE
Average Out of sample MSFE of BigVAR model with optimal lambda
seoosfmsfe
Standard error of out of sample MSFE of BigVAR model with optimal lambda
MeanMSFE
Average out of sample MSFE of unconditional mean forecast
MeanSD
Standard error of out of sample MSFE of unconditional mean forecast
MeanPreds
predictions from conditional mean model
RWMSFE
Average out of sample MSFE of random walk forecast
RWPreds
Predictions from random walk model
RWSD
Standard error of out of sample MSFE of random walk forecast
AICMSFE
Average out of sample MSFE of AIC forecast
AICSD
Standard error of out of sample MSFE of AIC forecast
AICPreds
Predictions from AIC VAR/VARX model
AICpvec
Lag orders selected from AIC VAR model
AICpvec
Lag orders selected from AIC VARX model
BICMSFE
Average out of sample MSFE of BIC forecast
BICSD
Standard error of out of sample MSFE of BIC forecast
BICPreds
Predictions from BIC VAR/VARX model
BICpvec
Lag orders selected from BIC VAR model
BICpvec
Lag orders selected from BIC VARX model
betaPred
The final estimated coefficient matrix, to be used for prediction
Zvals
The final lagged values of Y
, to be used for prediction
fitted
fitted values obtained from betaPred
resids
residuals obtained from betaPred
Data
a or
multivariate time Series
lagmax
Maximal lag order
Structure
Penalty structure
Relaxed
Indicator for relaxed VAR
Granularity
Granularity of penalty grid
horizon
Desired forecast horizon
crossval
Cross-Validation procedure
alpha
additional penalty parameter for Sparse Lag Group or Sparse Own/Other methods. Will contain either the heuristic choice of or the value selected by cross validation if the argument
dual
is set to TRUE
VARXI
VARX Indicator
Minnesota
Minnesota Prior Indicator
verbose
verbose indicator
dual
indicator as to whether dual cross validation was conducted
contemp
indicator if contemporaneous exogenous predictors are used
lagmatrix
matrix of lagged values used to compute residuals (of which Zvals is the final column)
betaArray
array of VAR/VARX coefficients from out of sample forecasts
sparse_count
average fraction of active coefficients in validation period
lambda_evolve_path
evolution of lambda over evaluation period
One can also access any object of class BigVAR from BigVAR.results
Will Nicholson
Construct an object of class BigVAR
constructModel( Y, p, struct, gran, h = 1, cv = "Rolling", verbose = TRUE, IC = TRUE, VARX = list(), T1 = floor(nrow(Y)/3), T2 = floor(2 * nrow(Y)/3), ONESE = FALSE, ownlambdas = FALSE, recursive = FALSE, dates = as.character(NULL), window.size = 0, separate_lambdas = FALSE, linear = FALSE, loss = "L2", rolling_oos = FALSE, model.controls = list() )
constructModel( Y, p, struct, gran, h = 1, cv = "Rolling", verbose = TRUE, IC = TRUE, VARX = list(), T1 = floor(nrow(Y)/3), T2 = floor(2 * nrow(Y)/3), ONESE = FALSE, ownlambdas = FALSE, recursive = FALSE, dates = as.character(NULL), window.size = 0, separate_lambdas = FALSE, linear = FALSE, loss = "L2", rolling_oos = FALSE, model.controls = list() )
Y |
|
p |
Predetermined maximal lag order (for modeled series). |
struct |
The choice of penalty structure (see details). |
gran |
vector of penalty parameter specifications. |
h |
Desired forecast horizon. |
cv |
Cross-validation approach, either 'Rolling' for rolling cross-validation or 'LOO' for leave-one-out cross-validation. 'None' for use with BigVAR.fit. |
verbose |
Verbose output while estimating. |
IC |
True or False: whether to include AIC and BIC benchmarks. |
VARX |
List containing VARX model specifications. |
T1 |
Index of time series in which to start cross validation. |
T2 |
Index of times series in which to start forecast evaluation. |
ONESE |
True or False: whether to use the 'One Standard Error Heuristic.' |
ownlambdas |
True or False: Indicator for user-supplied penalty parameters. |
recursive |
True or False: Indicator as to whether iterative multi-step predictions are desired in the VAR context if the forecast horizon is greater than 1. |
dates |
optional vector of dates corresponding to |
window.size |
size of rolling window. If set to 0 an expanding window will be used. |
separate_lambdas |
indicator for separate penalty parameters for each time series (default |
linear |
indicator for linearly decrementing penalty grid (FALSE is log-linear; default |
loss |
Loss function to select penalty parameter (one of 'L1','L2','Huber') |
rolling_oos |
True or False: indicator to update the penalty parameter over the evaluation period (default |
model.controls |
named list of control parameters for BigVAR model estimation (see details). |
The choices for 'struct' are as follows
'Basic' (Basic VARX-L)
'BasicEN' (Elastic Net VARX-L)
'Lag' (Lag Group VARX-L)
'SparseLag' (Lag Sparse Group VARX-L)
'OwnOther' (Own/Other Group VARX-L)
'SparseOO' (Own/Other Sparse Group VARX-L)
'EFX' (Endogenous First VARX-L)
'HLAGC' (Componentwise HLAG)
'HLAGOO' (Own/Other HLAG)
'HLAGELEM' (Elementwise HLAG)
'Tapered' (Lag weighted Lasso VAR)
'BGR' (Bayesian Ridge Regression (cf. Banbura et al))
'MCP' (Minimax Concave Penalty (cf. Breheny and Huang))
'SCAD' (Smoothly Clipped Absolute Deviation Penalty (cf. Breheny and Huang))
The first number in the vector 'gran' specifies how deep to construct the penalty grid and the second specifies how many penalty parameters to use If ownlambas is set to TRUE, gran should contain the user-supplied penalty parameters.
VARX specifications consist of a named list with entry k denoting the series that are to be modeled and entry s to denote the maximal lag order for exogenous series.
As the capabilities of BigVAR have expanded, we have decided to consolidate parameters in the list model.controls. These parameters include:
'alpha:' grid of candidate parameters for the alpha in the Basic Elastic Net, Sparse Lag, Sparse Own/Other VARX-L.
'C:' vector of coefficients to shrink toward a random walk (if MN
is TRUE
).
'delta:' parameter for Huber loss (default 2.5)
'intercept:' option to fit an intercept, default TRUE
'loss:' Loss function to select penalty parameter (one of 'L1','L2','Huber')
'MN:' Minnesota Prior Indicator, default FALSE
'RVAR:' option to refit based upon the support selected using the Relaxed-VAR procedure (default FALSE).
'refit_fraction:' If RVAR is TRUE
, proportional tradeoff between least squares fit and penalized fit (default 1).
'tol:' optimization tolerance (default 1e-4)
The argument alpha is ignored unless the structure choice is 'SparseLag' or 'Lag.' By default 'alpha' is set to NULL
and will be initialized as 1/(k+1) in cv.BigVAR
and BigVAR.est
. Any user supplied values must be between 0 and 1.
The specifications 'Basic','BasicEN', 'Lag,' 'SparseLag,' 'SparseOO','OwnOther', 'MCP', and 'SCAD.' can accommodate both VAR and VARX models. EFX only applies to VARX models. 'HLAGC,' 'HLAGOO,' 'HLAGELEM,' and 'Tapered' can only be used with VAR models. Our implementation of the SCAD and MCP penalties is heavily influenced by the package ncvreg
.
Banbura, Marta, Domenico Giannone, and Lucrezia Reichlin. 'Large Bayesian vector auto regressions.' Journal of Applied Econometrics 25.1 (2010): 71-92. Breheny P, Huang J (2011). “Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection.” Annals of Applied Statistics, 5(1), 232–253. Nicholson, William, I. Wilms, J. Bien, and D. S. Matteson. High dimensional forecasting via interpretable vector autoregression. Journal of Machine Learning Research, 21(166):1–52, 2020. William B. Nicholson, David S. Matteson, Jacob Bien,VARX-L: Structured regularization for large vector autoregressions with exogenous variables, International Journal of Forecasting, Volume 33, Issue 3, 2017, Pages 627-651, William B Nicholson, David S. Matteson, and Jacob Bien (2016), 'BigVAR: Tools for Modeling Sparse High-Dimensional Multivariate Time Series' arxiv:1702.07094
# VARX Example # Create a Basic VARX-L with k=2, m=1, s=2, p=4 VARX=list() VARX$k=2 # indicates that the first two series are modeled VARX$s=2 # sets 2 as the maximal lag order for exogenous series data(Y) T1=floor(nrow(Y)/3) T2=floor(2*nrow(Y)/3) Model1=constructModel(Y,p=4,struct='Basic',gran=c(50,10),verbose=FALSE,VARX=VARX,T1=T1,T2=T2)
# VARX Example # Create a Basic VARX-L with k=2, m=1, s=2, p=4 VARX=list() VARX$k=2 # indicates that the first two series are modeled VARX$s=2 # sets 2 as the maximal lag order for exogenous series data(Y) T1=floor(nrow(Y)/3) T2=floor(2*nrow(Y)/3) Model1=constructModel(Y,p=4,struct='Basic',gran=c(50,10),verbose=FALSE,VARX=VARX,T1=T1,T2=T2)
Cross Validation for BigVAR
cv.BigVAR(object)
cv.BigVAR(object)
object |
BigVAR object created from |
The main function of the BigVAR package. Performs cross validation to select penalty parameters over a training sample (as the minimizer of in-sample MSFE), then evaluates them over a test set. Compares against sample mean, random walk, AIC, and BIC benchmarks. Creates an object of class BigVAR.results
An object of class BigVAR.results
.
constructModel
, BigVAR.results
,BigVAR.est
data(Y) # Fit a Basic VARX-L with rolling cross validation Model1=constructModel(Y,p=4,struct='Basic',gran=c(50,10), verbose=FALSE) results=cv.BigVAR(Model1)
data(Y) # Fit a Basic VARX-L with rolling cross validation Model1=constructModel(Y,p=4,struct='Basic',gran=c(50,10), verbose=FALSE) results=cv.BigVAR(Model1)
Simulate a VAR
MultVarSim(k, A1, p, Sigma, T)
MultVarSim(k, A1, p, Sigma, T)
k |
Number of Series |
A1 |
Either a |
p |
Maximum Lag Order |
Sigma |
Residual Covariance Matrix of dimension |
T |
Number of simulations |
Returns a of realizations from a VAR.
Lutkepohl, 'A New Introduction to Multiple Time Series Analysis'
k=3;p=6 B=matrix(0,nrow=k,ncol=p*k) A1<- matrix(c(.4,-.02,.01,-.02,.3,.02,.01,.04,.3),ncol=3,nrow=3) A2 <- matrix(c(.2,0,0,0,.3,0,0,0,.13),ncol=3,nrow=3) B[,1:k]=A1 B[,(4*k+1):(5*k)]=A2 A <- VarptoVar1MC(B,p,k) Y <-MultVarSim(k,A,p,.1*diag(k),100)
k=3;p=6 B=matrix(0,nrow=k,ncol=p*k) A1<- matrix(c(.4,-.02,.01,-.02,.3,.02,.01,.04,.3),ncol=3,nrow=3) A2 <- matrix(c(.2,0,0,0,.3,0,0,0,.13),ncol=3,nrow=3) B[,1:k]=A1 B[,(4*k+1):(5*k)]=A2 A <- VarptoVar1MC(B,p,k) Y <-MultVarSim(k,A,p,.1*diag(k),100)
Plot an object of class BigVAR.results
## S4 method for signature 'BigVAR.results' plot(x, y = NULL, ...)
## S4 method for signature 'BigVAR.results' plot(x, y = NULL, ...)
x |
BigVAR.results object created from |
y |
NULL |
... |
additional arguments |
Plots the in sample MSFE of all values of lambda with the optimal value highlighted.
Plot a BigVAR object
## S4 method for signature 'BigVAR' plot(x, y = NULL, ...)
## S4 method for signature 'BigVAR' plot(x, y = NULL, ...)
x |
BigVAR object created from |
y |
NULL |
... |
additional plot arguments |
Uses plot.zoo to plot each indivdual series of Y
on a single plot
NA, side effect is graph
Forecast using a BigVAR.results object
predict(object,...)
predict(object,...)
object |
BigVAR.results object from |
... |
additional arguments affecting the predictions produced (e.g. |
Provides n.ahead
step forecasts using the model produced by cv.BigVAR. If confint
is set to TRUE
, a 95 percent confidence interval will also be returned.
data(Y) Y=Y[1:100,] Model1=constructModel(Y,p=4,struct='Basic',gran=c(50,10),verbose=FALSE) results=cv.BigVAR(Model1) predict(results,n.ahead=1)
data(Y) Y=Y[1:100,] Model1=constructModel(Y,p=4,struct='Basic',gran=c(50,10),verbose=FALSE) results=cv.BigVAR(Model1) predict(results,n.ahead=1)
Default show method for an object of class BigVAR.results
## S4 method for signature 'BigVAR.results' show(object)
## S4 method for signature 'BigVAR.results' show(object)
object |
BigVAR.results object created from |
prints forecast results and additional diagnostic information as well as comparisons with mean, random walk, and AIC, and BIC benchmarks
Default show method for an object of class BigVAR
## S4 method for signature 'BigVAR' show(object)
## S4 method for signature 'BigVAR' show(object)
object |
|
Displays the following information about the BigVAR object:
Prints the first 5 rows of Y
Penalty Structure
Relaxed Least Squares Indicator
Maximum lag order
VARX Specifications (if applicable)
Start, end of cross validation period
Sparsity Plot of a BigVAR.results object
SparsityPlot.BigVAR.results(object)
SparsityPlot.BigVAR.results(object)
object |
BigVAR.results object |
Uses levelplot
from the lattice
package to plot the magnitude of each coefficient in the last coefficient estimated by cv.BigVAR
.
NA, side effect is graph
data(Y) Y <- Y[1:100,] Model1 <- constructModel(Y,p=4,struct='Basic',gran=c(50,10),verbose=FALSE) SparsityPlot.BigVAR.results(cv.BigVAR(Model1))
data(Y) Y <- Y[1:100,] Model1 <- constructModel(Y,p=4,struct='Basic',gran=c(50,10),verbose=FALSE) SparsityPlot.BigVAR.results(cv.BigVAR(Model1))
Converts a VAR coefficient matrix of order p to multiple companion form
VarptoVar1MC(B, p, k)
VarptoVar1MC(B, p, k)
B |
a |
p |
Lag order |
k |
Number of Series |
Returns a coefficient matrix representing all coefficient matrices contained in Ai as a VAR(1).
See page 15 of Lutkepohl, 'A New Introduction to Multiple Time Series Analysis'
k=3;p=6 B=matrix(0,nrow=k,ncol=p*k) A1<- matrix(c(.4,-.02,.01,-.02,.3,.02,.01,.04,.3),ncol=3,nrow=3) A2 <- matrix(c(.2,0,0,0,.3,0,0,0,.13),ncol=3,nrow=3) B[,1:k]=A1 B[,(4*k+1):(5*k)]=A2 A <- VarptoVar1MC(B,p,k)
k=3;p=6 B=matrix(0,nrow=k,ncol=p*k) A1<- matrix(c(.4,-.02,.01,-.02,.3,.02,.01,.04,.3),ncol=3,nrow=3) A2 <- matrix(c(.2,0,0,0,.3,0,0,0,.13),ncol=3,nrow=3) B[,1:k]=A1 B[,(4*k+1):(5*k)]=A2 A <- VarptoVar1MC(B,p,k)
Fit a VAR or VARX model by least squares
VARXFit(Y, p, IC, VARX = NULL)
VARXFit(Y, p, IC, VARX = NULL)
Y |
a |
p |
maximum lag order |
IC |
Information criterion indicator, if set to |
VARX |
a list of VARX specifications (as in |
This function uses a modified form of the least squares technique proposed by Neumaier and Schneider (2001). It fits a least squares VAR or VARX via a QR decomposition that does not require explicit matrix inversion. This results in improved computational performance as well as numerical stability over the conventional least squares approach.
Returns a list with four entries:
'Bhat'Estimated coefficient matrix
'SigmaUEstimated residual covariance matrix
'phat'Selected lag order for VAR component
'shat'Selected lag order for VARX component
'Y'multivariate time series retained for prediction purposes
'Y'number of endogenous (modeled) time series
Neumaier, Arnold, and Tapio Schneider. 'Estimation of parameters and eigenmodes of multivariate autoregressive models.' ACM Transactions on Mathematical Software (TOMS) 27.1 (2001): 27-57.
constructModel
, cv.BigVAR
,BigVAR.fit
data(Y) # fit a VAR_3(3) mod <- VARXFit(Y,3,NULL,NULL) # fit a VAR_3 with p= 6 and lag selected according to AIC modAIC <- VARXFit(Y,6,'AIC',NULL) # Fit a VARX_{2,1} with p=6, s=4 and lags selected by BIC modXBIC <- VARXFit(Y,6,'BIC',list(k=1,s=4))
data(Y) # fit a VAR_3(3) mod <- VARXFit(Y,3,NULL,NULL) # fit a VAR_3 with p= 6 and lag selected according to AIC modAIC <- VARXFit(Y,6,'AIC',NULL) # Fit a VARX_{2,1} with p=6, s=4 and lags selected by BIC modXBIC <- VARXFit(Y,6,'BIC',list(k=1,s=4))
Evaluate forecasts from a VAR or VARX with lag orders selected by AIC/BIC
VARXForecastEval( Y, X, p, s, T1, T2, IC, h, iterated = FALSE, loss = "L2", delta = 2.5 )
VARXForecastEval( Y, X, p, s, T1, T2, IC, h, iterated = FALSE, loss = "L2", delta = 2.5 )
Y |
a |
X |
a |
p |
maximum lag order for endogenous series |
s |
maximum lag order for exogenous series |
T1 |
start of forecast evaluation period. |
T2 |
end of forecast evaluation period |
IC |
specifies whether to select lag order according to 'AIC' or 'BIC' |
h |
desired forecast horizon |
iterated |
indicator as to whether to use iterated or direct multistep forecasts (if applicable, VAR context only) |
loss |
loss function (default 'L2', one of 'L1','L2','Huber') |
delta |
delta for Huber loss function (default 2.5) |
This function evaluates the one-step ahead forecasts of a VAR or VARX fit by least squares over an evaluation period. At every point in time, lag orders for the endogenous and exogenous series are selected according to AIC or BIC. This function is run automatically when cv.BigVAR
is called unless ic
is set to FALSE
in constructModel
.
Returns the one-step ahead MSFE as well as the forecasts over the evaluation period and lag order selected.
Neumaier, Arnold, and Tapio Schneider. 'Estimation of parameters and eigenmodes of multivariate autoregressive models.' ACM Transactions on Mathematical Software (TOMS) 27.1 (2001): 27-57.
VARXFit
,constructModel
, cv.BigVAR
data(Y) # Evaluate the performance of a VAR with lags selected by BIC. p <- 4 T1 <- floor(nrow(Y))/3 T2 <- floor(2*nrow(Y))/3 # Matrix of zeros for X X <- matrix(0,nrow=nrow(Y),ncol=ncol(Y)) BICMSFE <- VARXForecastEval(Y,X,p,0,T1,T2,'BIC',1)
data(Y) # Evaluate the performance of a VAR with lags selected by BIC. p <- 4 T1 <- floor(nrow(Y))/3 T2 <- floor(2*nrow(Y))/3 # Matrix of zeros for X X <- matrix(0,nrow=nrow(Y),ncol=ncol(Y)) BICMSFE <- VARXForecastEval(Y,X,p,0,T1,T2,'BIC',1)
Realization of a simulated multivariate time series
multivariate time series distributed according to the generator matrix A.
Will Nicholson